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Abstract— Selective data return leverages onboard data analysis
to allocate limited bandwidth resources during remote exploration.
Here we present an adaptive method to subsample image sequences
for downlink. We treat selective data return as a compression
problem in which the explorer agent transmits the subset of mea-
surements that are most informative with respect to the complete
dataset. Experiments demonstrate selective downlink of navigation
imagery by a rover during autonomous geologic investigations in
the Atacama desert of Chile. Here automatic analysis identifies
informative images using classifications based on natural image
statistics. Image texture analysis, together with a context-sensitive
Hidden Markov Model representation, permits adaptive downlink in
response to geologic unit boundaries. Selective data return improves
the science content of returned data for this geologic mapping task.

I. INTRODUCTION

Autonomous robots performing remote science explo-

ration tasks can improve their performance by adapting to the

content of collected data. Autonomous onboard data analy-

sis will become increasingly important for rovers traveling

long distances between command cycles. Multi-kilometer

traverses will collect data from large areas of terrain that

will never be seen by humans [19]; these rovers can prioritize

the most important data products for their limited-bandwidth

communication with Earth [2].

The formal objectives of selective data return will depend

on science mission requirements. Scientists seeking evidence

of specific phenomena can use a target signatures approach

[2], commanding the explorer agent to prioritize these fea-

tures for downlink. For example, the E0-1 orbiter uses intel-

ligent data return that targets transient events such as floods

and volcanoes [5]. Image analysis onboard the Mars Ex-

ploration Rovers identifies dynamic atmospheric phenomena,

such as clouds and dust devils, and then flags these images

for selective return [3]. Researchers have developed more

sophisticated joint utility functions that combine multiple

targets of interest [17] and predict scientists’ preferences over

sets of returned features [8].

Target signature strategies may not be appropriate for all

applications. Many science features are too subtle for real-

time pattern recognition to identify consistently. Moreover,

features’ science value is often sensitive to the local spatial

context; the same feature can be more or less interesting
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Fig. 1. The rover platform “Zoë” used in Atacama desert autonomous ge-
ology experiments. Navigation cameras used for capturing image sequences
are mounted midway along the rover mast.

depending on the location in which it is found. These dis-

tinctions are especially important in site survey applications

that aim to characterize large areas efficiently.

Here we explore an alternative data return strategy that ad-

dresses these challenges. We formulate selective data return

as a compression problem with the goal of transmitting as

faithfully as possible the entire content of collected data. Our

objective function minimizes scientists’ posterior uncertainty

about the complete set of measurements given the returned

data. The Shannon entropy links our approach to the tradition

of optimal compression and communications theory [7], as

well as adaptive sampling strategies such as active learning

[15] and Bayesian experimental design [4].

This paper addresses the specific problem of selective data

return in an ordered image sequence. Image sequences are

common in planetary exploration applications — they occur

in flybys, landing sequences, and rover traverse datasets.

These image sequences can usually be collected at a much

higher rate than return bandwidth can accommodate. How-

ever, visual object detection is a challenging pattern recog-

nition problem so it is usually difficult to characterize their

science content accurately. In our approach a Hidden Markov

Model (HMM) compensates for this uncertainty by leverag-

ing the local continuity of the explored environment. We

demonstrate selective downlink of rover navigation imagery

from autonomous geologic investigations in the Atacama

desert of Chile. The rover uses image texture analysis to-

gether with a context-sensitive HMM representation in order

to identify and communicate the location of geologic units.



Fig. 2. Hidden Markov Model of rover traverse imagery. Image content is
represented by hidden variables {X1, X2, . . . , XT } associated with proxy
features {Y1, Y2, . . . , YT }.

II. APPROACH

The remote exploration procedure consists of two stages.

In the initial data collection phase the explorer agent collects

a series of images A = {M1, M2, . . . , MT }. Each image Mt

is associated with the independent experimental variable t.

We will consider the one-dimensional case where t is the

observation’s location in an ordered series indexed by time

or position along a transect.

The images vary across every pixel value so each Mt is

drawn from a very high dimensional space. However, most

of this information is superfluous to the science investi-

gation. Instead, remote scientists base their interpretations

on more abstract features such as physical objects in the

scene. For example, a remote geologic site survey might

involve differences in sediment structure [1], shape or size

attributes of rocks [13], or the presence of desired objects

like outcrops. We represent these attributes by assigning each

image a discrete-valued label Xt so that the dataset maps to

a sequence of variables B = {X1, . . . , XT }. These values

represent the “high-level content” that would be readily

apparent to a scientist interpreting the images.

The exploration agent attempts to identify this science

content with automatic pattern recognition. These proxy clas-

sifications Yt yield a sequence C = {Y1, . . . , YT }. Since the

autonomatic classifications are imperfect the remote explorer

agent cannot be certain of the image’s true label. However,

the agent can still exploit noisy correlations with science

phenomena to make principled data return decisions.

In the data return phase the agent computes a downlink

transmission B′ to optimize a reward function R(B′; B).
This reward should reflect the downlink’s science value. We

formulate subset selection as a compression task to transmit

B to a receiver with minimal distortion across a bandwidth-

limited channel [7]. In other words, the agent should favor

downlinks that preserve the science content of the complete

image set. We can write the reward as a functional over pos-

terior distributions: R(P (B|B′)). We desire that the reward

functional encourage posterior certainty about B; it should be

some measure of information gain such as the negative con-

ditional Shannon entropy −H(B|B′). This work employs the

negative sum of residual marginal entropies
∑

t
H(Xt|B

′).
We will see that this reward functional facilitates an easy

solution to the optimization problem.

While in general we are interested in an arbitrary transmis-

sion that maximizes R(P (B|B′)), circumstances of remote

science exploration favor a subset selection approach to

image return. Remote science missions often place a high

value on lossless data products that can serve as validated,

archival science records. Here we will follow this convention

and return a subset of collected measurements. For a cost L
reflecting the size of the transmission, the penalty of sending

the classification results will be trivial relative to the cost of

the images themselves: L(Mt) ≫ L(Yt). This suggests that

image classifications will be returned in any case, and that the

loss function can be expressed in the form R(P (B|B′, C)).
For an available downlink budget k the objective becomes:

B
′

opt =sup
B′

R(P (B|B′
, C))

B
′ ⊆ B

L(B′) + L(C) ≤ k (1)

Choosing the optimal return subset requires modelling cor-

relations between Yt and the actual label Xt. However, one

can also exploit relationships between hidden variables them-

selves. One important relationship concerns the spatial conti-

nuity of the explored environment — consecutive images are

likely to have the same label. We capture these correlations

using a Hidden Markov Model (HMM) where each image in

the sequence is conditionally independent of the others given

its immediate neighbors (Fig. 2). Model parameters consist

of initial state probabilities P (X1), transition probabilities

P (Xt+1|Xt) representing the probability of state transitions

from one timestep to the next, and emission probabilities

P (Yt|Xt) representing correlations between images’ true

labels and the automatic classifications.

Designers have several options for estimating HMM pa-

rameters. If scientists can enumerate all the image features of

interest then HMM parameters can be estimated from labeled

training data using standard supervised learning techniques.

The Maximum Likelihood parameter estimates for discrete

labels are given by the empirical counts:

P̂ (Xt+1 = i|Xt = j) =

P

t
δ(Xt+1 = j, Xt = i)

P

t
δ(Xt = i)

P̂ (Yt = k|Xt = j) =

P

t
δ(Yt = k, Xt = i)
P

t
δ(Xt = i)

(2)

In the following experiments we will assume that previous

training data is available so that the HMM parameters are

known in advance.

On the other hand, if the investigation is a general site

survey the scientists might not know what to expect and the

phenomena of interest represented by Xt may be ambiguous.

In this case it might be better to estimate labels automatically

at runtime. For example, the explorer agent could use the

Baum-Welch algorithm [16] to estimate Maximum Likeli-

hood HMM parameters. The best number of state labels is a

model selection problem to be addressed by cross validation

or measures such as the Akaike Information Criterion [18].

Following Krause and Guestrin [14] we base our reward

function on the sum of posterior marginal entropies. The

complete reward decomposes into the sum of individual

rewards for each Xt.



R(P (B|B′
, C)) =

X

Xt∈B

Ri(P (Xt|B
′
, C))

= −
X

Xt∈B

H(Xt|B
′
, C) (3)

Expected conditional entropies of the hidden variables can

be calculated in the following manner, where x represents

the possible assignments to variables in B and x′ represents

assignments to B′.

R(P (B|B′
, C)) = − EB′

X

Xt∈B

H(Xt|B
′
, C)

= −
X

x′

P (x′)
X

xt,x′

P (xt, x
′|C) log P (xt|x

′
, C)

(4)

Krause and Guestrin present a dynamic programming algo-

rithm for optimal subset selection that exploits a decompo-

sition of the local reward function [14]. We omit the details

here for brevity; the basic idea is to decompose the reward

into subchains that become conditionally independent when

hidden nodes are revealed. Ultimately we need only evaluate

combinations of possible assignments to two variables in B′

- those at either end of the current subchain. The resulting

recursive algorithm can be used to compute R(P (B|B′, C)).
In summary, selective return consists of the following

procedure:

1) The agent performs a traverse and collects images

whose science content is a sequence of hidden vari-

ables B = {X1, X2, . . . , XT }.

2) Onboard pattern recognition processes the images

to yield the sequence of noisy classifications C =
{Y1, Y2, . . . , YT }.

3) The agent chooses the subset of images B′ to optimize

R(P (B|B′, C)) from equation 4.

4) Scientists receive the image subset and observe the

values Xt ∈ B′.

A series of simulated trials investigated the effects of

different environments and classification noise on data return

behavior. We synthesized data from a traverse sequence in

which Xt ∈ {0, 1} and Yt ∈ {0, 1}. Each Xt maps onto

its corresponding binary-valued classification with a small

probability of error. Similarly, the environment has some

small probability of a state transition between sampling

locations.

Fig. 3 illustrates typical data return behavior with a

simulated traverse containing a single state transition. The

agent mitigates observation uncertainty by returning images

surrounding the likely transition; this helps the receiver to

identify its precise location. Fig. 4 shows a traverse with

equivalent states and observations. In this second case the

agent’s model parameters imply frequent state transitions and

a poor correlation between science content and the automatic

classification. The agent considers its proxy classifications

to be less informative and opts for a more conservative

policy. Its optimal strategy is closer to periodic sampling with

Fig. 3. Typical behavior of the data return algorithm in the noisy
binary case, with nodes colored according to their value. The agent only
observes the the proxy classifications Yi on the bottom row. Rectangles
indicate images selected for return. This example uses transition and error
probabilities of 0.1, for which the optimal subsampling consists of images
clustered near likely state transitions.

Fig. 4. In this segment the agent presumes transition and error probabilities
of 0.33, but the observations are identical to Fig 3 above. Increased noise
implies that automatic classifications are less informative, resulting in a
more conservative subsampling strategy.

returned images spaced regularly throughout the sampling

domain.

We computed optimal data return strategies for a series

of simulated traverses in which 30 collected images were

subsampled to a 6-image downlink dataset. Fig. 5 character-

izes the resulting downlinks for various levels of transition

and observation noise. Isocontours show the variance in the

distance between samples; high variance suggests irregular

clusters of samples such as those in Fig. 3 while low variance

indicates evenly-spaced sampling as in Fig. 4. Formulating

selective data return as compression prescribes a return strat-

egy that is reflects both the context of local observations and

the fidelity of onboard pattern recognition to the underlying

phenomena of interest.

III. FIELD EXPERIMENTS

This section details our implementation of the selective

data return algorithm for geologic boundary detection. We
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Fig. 6. ASTER orbital imagery corresponding to a 4.3km traverse. The
initial terrain consists of homogeneous desert pavement covered with small
rocks (< 10 cm). After the first kilometer the terrain changes (yellow dashed
line) to a mixture of larger block sizes with occasional bare clay. Scientists
evaluating the orbital data hypothesized a second boundary (red dashed line)
but no change was clearly visible from the ground. In this annotated image
a thin white line shows the traverse locations where navigation imagery was
captured.

consider a series of autonomous rover traverse experiments

in the Atacama Desert, a Mars-analog site in Chile. These

experiments deal with operations at the “Guanaco” site

(referenced elsewhere as Site F) that involved over 50km

of autonomous traverse. The rover platform used for the

experiments is “Zoë,” an exploration robot developed at

Carnegie Mellon [19]. Zoë is a capable vehicle that travels

up to 1 m/s in open terrain (Fig. 1). Onboard stereo vision,

obstacle avoidance and path planning enable autonomous

traverses of up to several kilometers per day.

During field operations scientists studying Atacama ge-

ology guide the rover remotely by selecting a series of

waypoints in satellite images. Occasionally these traverses

cross an area hypothesized to contain a contact between

two or more geologic units. Fig. 6 shows one unit boundary

where a multi-kilometer drive action crosses a clear border

between a low-albedo region of desert pavement and a high-

albedo region of mixed cobbles.

These surface unit borders are geologically informative

but difficult to verify from orbital imagery alone. However,

in planetary exploration scenarios it would be infeasible to

identify unit boundaries by transmitting the entire catalog of

collected images. Here we address the issue with adaptive

data return. The HMM provides a natural framework for

mapping geologic state during long-distance autonomous

traverse. We take the science content Xi to be a label of

the geologic unit for image Mt.

A. Image Processing

The navigation cameras used for this experiment provide

a 60-degree field of view at 320x240 pixel resolution; they

point downward to view the terrain directly in front of the

rover. The image analysis scheme classifies these images

according to the geologic unit their contents represent. Image

texture has been found in the laboratory to be a good

Fig. 7. Original navigation image (left) and false color image showing
texton values of individual pixels (right). To limit horizon and sky artifacts,
we use only the bottom half of each image to compute its summary
descriptor.

correlate of geomorphology [9]; our analysis uses simple

local texture descriptors extracted from the foreground of

each image.

We describe local textures using the texton method of

Varma and Zisserman [21]. We convolve all images in a

training set with the Maximum Response 8 filter bank. This

results in an 8-dimensional response vector for each pixel.

The responses from several training images are aggregated

and clustered using k-means to form a set of 16 universal

textons. These textons yield an image map that assigns

each individual pixel to its Euclidean-nearest texton (Fig. 7).

Different textons approximately capture the different kinds

of surface materials such as rocks, shadows, sediments of

varying texture, and salt deposits.

The proportions of each texton form a 16-dimensional

feature vector which serves as a feature space for predicting

the images’ geologic unit type. We produce training data

automatically by indexing rover position against a georefer-

enced map of predicted unit boundaries drawn previously by

geologists using orbital images. The rover’s uncertainty about

image labels is negligible whenever the rover’s distance

from all boundaries is large relative to its own localization

uncertainty. In cases where geologists are fairly certain about

the boundary position we can assign an unambiguous unit

label to those images. This training data can be reserved

for future traverses where the boundary locations are less

certain. Image classification uses a support vector machine

with a radial basis kernel function [6].

At the Guanaco site expedition, four extended traverses

Fig. 8. Three boundary-crossing traverses from the Atacama expedition.
These Visible/Near Infrared orbital images were collected by the ASTER
instrument [22] and used by geologists to draw preliminary geologic
maps. The bright white line in each image represents the position track
of the rover during the traverse, while the red dashed line shows the
boundary hypothesized by the project geologist. Each image pixel represents
approximately 15 square meters of terrain. Desert roads, drainages, and other
high-albedo features are also visible.



TABLE I

CLASSIFICATION ACCURACY FOR TEXTURE-BASED IMAGE FEATURES.

Traverse Training Accuracy Test Accuracy State Estimation

I 96.8 82.0 84.0

II 100.0 88.5 96.2

III 97.4 88.3 98.1

cross boundaries that remote geologists have previously

identified as probable contact points between units of surface

material. We use one of these traverses as a test set for

tuning image processing scheme and apply our selective

return strategy to the remaining three traverses (Fig. 8).

Table I shows the results of the classification procedure.

The first column shows 10-fold cross validation training

error, while the second shows test accuracy on over 1000

images from the Atacama image dataset. Test accuracy

is substantially lower than cross-validation would suggest

due to several factors that complicate generalization across

traverses. The geologic units themselves are not completely

homogeneous, and the geologic content of two traverses

may differ despite having the same map label. Moreover,

changing lighting conditions create shadows and cause sys-

tematic changes in the visual appearance of terrain. Two

traverses may therefore exhibit markedly different features

if they occur at a different time of day. However, for the

purposes of this experiment it is not necessary that the image

classification be perfect; rather, our goal is to account for this

error to improve selective downlink.

The final column of table I shows the image label accuracy

on test results after posterior smoothing of the HMM. The

Viterbi algorithm [10] produces the Maximum Likelihood

state sequence, which is a better correlate of the true unit

labels than the independent image classifications. We include

this score for interest only, to suggest that the HMM structure

helps state estimation by capturing the continuity of the real

environment. The Viterbi parse is an estimate of Xt and not

Yt; it does not necessarily reflect the accuracy of the image

classification procedure itself.

B. Selective Return

Each of the three test traverses consist of a navigation se-

quence of 50 images; selective return produces a subset of 10
images for downlink. We use conservative HMM parameters:

a transition probability of P (Xt+1 = i|Xt = i) = 0.9, and

a classification accuracy of 0.8. The transition probability is

fixed through trial and error to produce reasonable results

for the training traverse. Note that this value is sensitive

to the imaging rate; a denser image sequence would imply

a lower state transition probability. Figure 9 shows the

resulting locations of the returned images, the location of

the boundary hypothesized by geologists, and the rover’s

posterior probability estimate of the hidden state.

Of the three segments, the state estimation in traverse

I exhibits the worst match to the geologist-hypothesized

boundary. We attribute this to particularly poor classification

scores (Table I). The distinctions between the geologic units
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Fig. 9. Returned images from the three traverses, along with the posterior
state estimate. Selective return allocates images to areas where the hidden
state is most ambiguous, such as border areas (top and bottom) and
anomalous observations (middle)

was subtle, and the units themselves were highly heteroge-

neous (each containing mixtures of small of rock-strewn and

open areas). Thus, the actual location of the true boundary

is somewhat ambiguous. Moreover, field conditions compli-

cated the selective return procedure. The traverse occurred

late in the day with rapidly changing light conditions that

independently altered image appearance over time.

Traverse II’s state estimation accurately identifies the

geologic unit boundary. The return procedure fixes any

remaining ambiguity with an image that corresponds exactly

to the anticipated border. Other images selected for return

include those from three locations later in the traverse. Here

the system classifies several images as belonging to the

first unit, which increases the probability of a rare state

transition. The resulting uncertainty about hidden state in

these areas motivates the selective return procedure to spend

extra bandwidth there.

In traverse III geologists have hypothesized a homoge-

neous traverse finished by a single discrete transition at the

base of a hill. In fact, the approach to the hill was itself

strewn with rocks similar to those present at the peak. This is

reflected by a gradual transition rather than a clear boundary.

It is unsurprising that image labels in this area are mixed,

resulting in an uncertain, gradually changing state estimate.

The selective return procedure reacts by allocating samples

more-or-less evenly throughout this transition area. A clear

difference in sedimentology is evident between the first and

last images from the downlinked dataset (Fig. 10).

The field experiments demonstrate that time sequence

models are appropriate for remote transect surveys. The

HMM permits context-sensitive state inference and calcu-

lation of informative observations for selective data return.

IV. CONCLUSIONS

This paper presents a new approach for selective return of

ordered data products during remote exploration. We treat



Fig. 10. The first (top) and last (bottom) images returned from traverse
III. Only the analyzed foreground portion of each image is shown.

the problem as a compression task where the agent has

limited information about the science content of collected

data. In these cases, noisy feature classification can still be

used to inform data return decisions. The performance of this

classification is an essential consideration, since accurate fea-

ture detection permits highly selective targeted sampling. As

feature classifications become less informative, conditional

dependencies due to local context begin to dominate the

observations. The agent’s behavior comes to resemble the a

priori data return strategy (in our case, periodic sampling).

There are multiple avenues for improving the demon-

strated system. With respect to geologic investigations, better

image analysis is a promising means to increase perfor-

mance. We aim to leverage recent work in the computer

vision community on scene classification and natural image

statistics. Better patch descriptors and hierarchical content

models are likely possibilities. It may be desirable to in-

troduce explicit detection of scene objects such as rocks,

sediment patches, or layered outcrops. Finally, the classi-

fication difficulties we experienced with traverse I suggest

it will be necessary to address generalization issues such

as shadow removal, color constancy and lighting invariance.

The model itself is another candidate for future work. Alter-

native state representations, such as continuous states, may

be more appropriate for some domains. Since the inference

algorithms we employ here apply to any chain-structured

model, distributed representations such as Factorial Hidden

Markov Models [12] might permit more complicated and

structured science content. Gaussian processes [20] are also

promising possibilities for time series data.

Several open challenges remain. We have demonstrated

that classification inaccuracy can have a significant impact on

sample spacing. This raises the question of how to estimate

future classification performance. By definition, exploration

tasks involve investigating new areas and phenomena that

differ from our expectations. How then shall we accurately

predict generalization error of the onboard pattern recogni-

tion? It may be possible for the agent itself to recognize

anomalous situations by tracking the data likelihood [11].

If the traverse likelihood lies within the envelope of its

training data, the agent can be more confident that its targeted

sampling is improving performance.
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